2. Đề thi học sinh giỏi tỉnh Bắc Giang năm học 2013 - 2014
Câu 1 (4 điểm)
Giải hệ phương trình
{3x2−8x+2(x−1)√x2−2x+2=2(y+2)√y2+4y+5x2+2y2=4x−8y−6
Câu 2 (4 điểm)
Cho ba số dương a,b,c thỏa mãn ab+bc+ca=3.CMR
a√b+ca2+bc+b√c+ab2+ca+c√a+bc2+ab≤3abc
Câu 3 (4 điểm)
Cho tam giác ABC có ^ABC<^BAC. Trên đường thẳng BC lấy điểm D thỏa mãn ^CAD=^ABC.Đường tròn (O) bất kì đi qua B,D cắt AB,AD lần lượt tại M,N .Kẻ hai tiếp tuyến AP,AQ với (O),P,Q thuộc (O). Gọi G là giao điểm của BN và DM, gọi I là trung điểm của AG.
a/ CMR: P,Q,G thẳng hàng.
b/ CMR: CI vuông góc với AG.
Câu 4 (4 điểm)
Cho dãy số (xn) thỏa mãn
{x1=0,x2=1xn+1=3xn−1+210xn+2xn−1+2,n≥2
Chứng minh rằng dãy (xn) có giới hạn và tìm limxn
Câu 5 (4 điểm)
Tìm cặp các số nguyên (a,b) sao cho
b2+ab+a+b−1a2+ab+1
là một số nguyên.
Bài 1: Giải hệ phương trình
{8x3+2y=√y+5x+2(3x+√1+9x2)(y+√1+y2)=1
.
Bài 2: Cho a,b,c là 3 số thực dương thỏa abc=1 . Tìm giá trị nhỏ nhất của biểu thức
P=bca2b+a2c+cab2c+b2a+abc2a+c2b
Bài 3:
1) Cho hai đường tròn (O1) và (O2) lần lượt có bán kính là R1,R2(R1<R2) tiếp xúc trong tại A. Gọi M là điểm di động trên (O1) (M khác A), tiếp tuyến của (O1) tại M cắt (O2) tại B và C. Gọi M′ (M′ khác A) là giao điểm của AM với (O2).
a) Chứng minh AM′ là đường phân giác của góc ^ABC .
b) Tìm quỹ tích tâm I của đường tròn nội tiếp tam giác ABC.
2) Cho đường tròn (C) có tâm I và đường kính AB, trên đoạn IB lấy điểm C (C khác I và B). Đường thẳng (d) vuông góc với AB tại C và H là điểm thay đổi trên (d). Đường thẳng AH cắt đường tròn (C) tại điểm D và đường tròn BH cắt đường tròn (C) tại E. Chứng minh đường thẳng DE luôn đi qua điểm cố định.
Bài 4: Cho dãy số (xn),n=1,2,3,... xác định bởi
{x1=1xn+1=√xn(xn+1)(xn+2)(xn+3)+1,n=1,2,3,...
a) Chứng minh : limn→+∞xn=+∞
b) Tìm limn→+∞n∑k=11xk+2
Bài 5: Tìm tất cả hàm số liên tục f:R→R sao cho
f(x)+f(x4)=4026+x+x4
4. Đề thi học sinh giỏi tỉnh Đồng Tháp năm học 2013 - 2014
Câu 1:
a) Giải phương trình (2cosx−1)(sinx+cosx)=1
b) Cho a,b,c là số thực dương. Chứng minh rằng ta có
2(a+b)2+2(b+c)2+2(a+c)2≥1a2+bc+1b2+ac+1c2+ab
Câu 2:
a) Chứng minh nếu p là số nguyên tố dạng 4k+3 thì không tồn tại số nguyên dương n sao cho n2+1 chia hết cho p
b) Giải phương trình nghiệm nguyên (x+y)2+2=2x+2013y.
Câu 3:
Cho dãy an thoả a1=12, an+1=an+n22013, n≥1
a) Chứng minh dãy tăng nhưng không bị chặn trên
b) Đặt Sn=∑ni=11a1+2013. Tìm limn→+∝Sn
Câu 4:
Tam giác ABC nhọn có H là trực tâm, AH,BH,CH lần lượt cắt BC,CA,AB tại M,N,P. AE và MF cùng vuông gọc với NP (trong đó E, F thuộc NP)
a) Chứng minh rằng H là tâm đường tròn nội tiếp tam giác MNP và A là tâm đường tròn bàng tiếp góc M của MNP
b) Chứng minh EH đi qua trung điểm của MF
Câu 5:
Cho dãy các phân số: 11,12,...,12012,12013. Người ta biến đổi dãy bằng cách xoá đi 2 số a,b bất kì và thay bằng số a+b+ab. Sau một lần biến đổi các số hạng giảm đi 1 đơn vị so với dãy trước. Chứng minh rằng giá trị của số hạng cuối sau 2012 lần biến đổi không phụ thuộc vào thứ tự thực hiện và tìm giá trị đó.
5. Đề thi học sinh giỏi thành phố Đà Nẵng năm học 2013 - 2014 Xem và thảo luận tại đây/
6. Đề thi học sinh giỏi tỉnh Quảng Bình năm học 2013 - 2014
Câu 1 (4.0 điểm)
Giải phương trình x=√3−x.√4−x+√4−x.√5−x+√5−x.√3−x
Câu 2 (4.0 điểm)
Cho a là số thực dương tùy ý. Xét dãy số (xn) được xác định như sau:
x1=a;xn+1=xn√2+√2+...+√2xn+1,
(tử số có n dấu căn); ∀n=1,2,3...
Tính giới hạn của dãy số (xn).
Câu 3 (4.0 điểm)
Tìm các hàm số f:R→R thỏa mãn:
12f(xy)+12f(xyz)−f(x)f(yz)≥14,∀x,y,z∈R.
Câu 4 (4.0 điểm)
Cho tam giác ABC và M,N là hai điểm di động trên đường thẳng BC sao cho →MN=→BC. Đường thẳng d1 đi qua M và vuông góc với AC, đường thẳng d2 đi qua N và vuông góc với AB. Gọi K là giao điểm của d1 và d2. Chứng minh rằng trung điểm I của đoạn AK luôn nằm trên một đường thẳng cố định.
Câu 5 (4.0 điểm)
Chứng minh rằng trong 39 số tự nhiên liên tiếp bất kỳ luôn có ít nhất một số có tổng các chữ số chia hết cho 11.
Câu 6 (5,0 điểm).
Giải hệ phương trình: {9y4+24y3−xy2+7y2=16−x+24y8y3+9y2+20y−3√6y+1+15=x(x,y∈R)
Câu 7 (5,0 điểm).
Cho các số thực dương x, y, z thỏa mãn: xyz=8. Tìm giá trị nhỏ nhất của:
P=1(1+x)3+8(2+y)3+64(4+z)3.
Câu 8 (5,0 điểm).
Cho hai đường tròn (I) và (J) cắt nhau tại A và B sao cho IA⊥JA. Đường thẳng IJ cắt hai đường tròn tại C,E,D,F sao cho các điểm C,I,E,D,J,F nằm trên đường thẳng theo thứ tự đó. BE cắt đường tròn (I) tại điểm thứ hai K và cắt AC tại M. BD cắt đường tròn (J) tại điểm thứ hai L và AF tại N.
a) Chứng minh rằng: MN⊥AB.
b) Chứng minh rằng: KE.LN.ID=JE.KM.LD.
Câu 9 (5,0 điểm).
Cho các số nguyên dương n,k,p với k≥2 và k(p+1)≤n. Cho n điểm phân biệt cùng nằm trên một đường thẳng. Tô n điểm đó bằng hai màu xanh, đỏ (mỗi điểm chỉ tô đúng một màu). Tìm số cách tô màu khác nhau, sao cho các điều kiện sau đồng thời được thỏa mãn:
1) Có đúng k điểm được tô bởi màu xanh.
2) Giữa hai điểm màu xanh liên tiếp (tính từ trái qua phải) có ít nhất p điểm được tô màu đỏ.
3) Ở bên phải điểm tô màu xanh cuối cùng có ít nhất p điểm được tô màu đỏ.
(Hai cách tô màu được gọi là khác nhau nếu có ít nhất một điểm được tô màu khác nhau trong hai cách đó).
7. Đề thi chọn đội tuyển trường PTNK, Tp. Hồ Chí Minh năm học 2013 - 2014. Xem và thảo luận tại đây/
8. Đề thi học sinh giỏi Tp. Cần Thơ năm học 2013 - 2014
Câu 1: Giải hệ phương trình sau:
{x3+3xy2=25x2+6xy+y2=10x+6y−1(x,y∈R)
Câu 2: Cho tam giác ABC có ba góc đều nhọn, AB<AC, AH là đường cao và AD là đường phân giác trong. Gọi E,F lần lượt là hình chiếu vuông góc của D trêm các cạnh AC và AB,M là giao điểm của BE và CF.
1. Chứng minh ba điểm A,M,H thẳng hàng.
2. Gọi K là giao điểm của EF và BC. Chứng minh HBHC=KBKC.
3. Gọi N là giao điểm của BC với đường kính qua A của đường tròn ngoại tiếp tam giác ABC. Chứng minh : HBHCNBNC<1
Câu 3: Cho a,b,c ;à ba số nguyên khác không và thỏa mãn a2b+b2c+c2a=3abc(1)
1. Hãy chỉ ra một bộ số nguyên a,b,c đôi một khác nhau thỏa(1)
2. Chứng minh abc là lập phương của một số nguyên.
Câu 4: Cho các đa thức P(x),Q(x) với hệ số thức thỏa mãn điều kiệm P(x)=Q(x)+Q(1−x),∀x∈R. Biết P(0)=0 và các hệ số của P(x) đều không âm. Tính P(P(2013)).
Câu 5: Tìm tất cả các hàm số f:Z↦Z thỏa mãn các điều kiện :
{f(0)=1f(f(m+n)+m)=n∀m,n∈Z
Câu 6: Một bảng ô vuông không giới hạn số dòng, số cột và trên đó mới chỉ ghi hai số 1 và 3 vào hai ô khác nhau. Ta thực hiện trò chơi viết thêm số vào các ô vuông như sau: nếu trên bảng có hai số tự nhiên a và b thì được phép viết thêm số c=a+b+ab vào ô vuông còn trống trên bảng. Hỏi bằng cách đó trên bảng có thể xuất hiện được các số 2509 và 20132014 hay không? Giải thích tại sao?
9. Đề thi học sinh giỏi tỉnh Long An 2013Câu I (5,0 điểm).
1. Giải phương trình x2+6x+1=(2x+1)√x2+2x+3
2. Giải hệ phương trình {x3+2x2=5−2y(15−2x)√6−x−(4y+9)√2y+3=0
Câu II (5,0 điểm).
1. Trong mặt phẳng toạ độ Oxy cho tam giác ABC cân tại A, cạnh AB và BC lần lượt nằm trên các đường thẳng x−2y+1=0, x−y=0. Tìm toạ độ các đỉnh A và C biết bán kính đường tròn ngoại tiếp tam giác ABC bằng 5√2.
2. Cho tam giác ABC, gọi D là điểm đối xứng của C qua AB, vẽ đường tròn tâm D qua A và B. Gọi M là điểm bất kì trên đường tròn đó. Chứng minh rằng MA2+MB2=MC2.
Câu III (4,0 điểm).
Cho số thực α∈(0;1), xét dãy số (un) với
{u1=αun+1=12014u2n+20132014√un
1. Chứng minh rằng 0<un<1
2. Chứng minh rằng dãy số (un) có giới hạn hữu hạn. Tìm giới hạn đó.
Câu IV (3,0 điểm). Cho ba số thực dương a,b,c thoả mãn 12+a+12+b+12+c≥1. Chứng minh rằng abc≤1.
Câu V (3,0 điểm).
Cho phương trình √21+4x−x2−34x+3=m(√x+3+2√7−x). Tìm m để phương trình có nghiệm.
10. Đề thi học sinh giỏi tỉnh Quảng Nam 2013. Xem và thảo luận tại đây.
11. Đề thi học sinh giỏi tỉnh Bình Phước năm 2013 - 2014. Xem và thảo luận tại đây.
12. Đề thi học sinh giỏi tỉnh Lạng Sơn 2013
12. Đề thi học sinh giỏi tỉnh Lạng Sơn 2013
Câu 1.
Tìm giá trị nhỏ nhất, giá trị lớn nhất của hàm số:
y=2x2−4x+6√(x+4)(6−x)+3
trên đoạn [−4;6].
Câu 4.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Hình chiếu vuông góc của đỉnh S lên mặt phẳng (ABCD) là trung điểm H của đoạn thẳng AO. Biết SH=2a.
a) Tính cosin góc giữa hai mặt phẳng (SCD) và (ABCD).
b) Tính khoảng cách giữa hai đường thẳng AB và SC.
Câu 5.
Cho dãy số (an) xác định như sau:
{a1=5an+1=a2n−2an+166
Đặt S=n∑i=11ai+2
Tìm limSn.
13. Đề thi học sinh giỏi tỉnh An Giang 2013
Câu 1. Cho hàm số y=x3−3x có đồ thị (C) và đường thẳng (d):y=m(x−1)+2. Tìm m để (d) cắt (C) tại 3 điểm phân biệt
Câu 2. Tìm giá trị nhỏ nhất của hàm số sau với x>0 y=f(x)=2x+1x+√2(1+1x2)
Câu 3. Giải phương trình và hệ phương trình sau :
a) sin2x+12tanx=32−cos2x
b) {y2−5√x+5=0√x+2=√y2+2y+3−15y2+y
Câu 4. Trong mặt phẳng Oxy cho hai đường thẳng (Δ):x−y+2=0, (d):3x+y−4=0 và điểm A(2;2). Viết phương trình đường tròn (C) đi qua điểm A có tâm nằm trên đường thẳng d và tiếp xúc với đường thẳng Δ.
14. Đề thi học sinh giỏi thành phố Hải Phòng 2013. Xem và thảo luận tại đây
15. Đề thi học sinh giỏi tỉnh Bắc Ninh 2013. Xem và thảo luận tại đây
16. Đề thi học sinh giỏi tỉnh Bến Tre 2013
Câu 1.
a) Từ đỉnh Q của một hình bình hành PQRS kẻ các đường thẳng QE vuông góc với RS(E thuộc đoạn RS, E khác R và khác S) và QK vuông góc cới PS (K thuộc đoạn PS, K khác P và khác S). Biết KE=x; QS=y (y>x). Gọi H là trực tâm của tam giác QEK. Tính QH theo x và y.
b) Trong mặt phẳng với hệ tọa độ Oxy gọi (d) là đường thẳng cắt parabol (P): y2=4x tại hai điểm phân biệt A,B (A,B khác gốc tọa độ O) sao cho tam giác OAB vuông tại O. Chứng minh rằng đường thẳng (d) luôn đi qua một điểm cố định.
Câu 2.
a) Cho f(x) là một đa thức với hệ số nguyên. Chứng minh rằng nếu n số f(0),f(1),f(2),...,f(n−1) đều không chia hết cho n (n là số tự nhiên, n≥2) thì phương trình f(x)=0 không có nghiệm nguyên.
b) Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên có 6 chữ số khác nhau và tính tổng của tất cả các số vừa tìm.
Câu 3. Giải phương trình và hệ phương trình sau:
a) √x+8+9x√x+8−6√x=0.
b) {x2=2x−yy2=2y−zz2=2z−tt2=2t−x
Câu 4. Có ba trường học mỗi trường có n học sinh. Một học sinh bất kỳ có tổng số người quen từ hai trường học kia là n+1. Chứng minh rằng có thể chọn được ở mỗi trường học một học sinh sao cho ba học sinh này quen lẫn nhau.
17. Đề thi học sinh giỏi tỉnh Bà Rịa Vũng Tàu 2013
Câu 1. (4 điểm) Giải phương trình sau trên tập số thực
8x3−12x2+5x=3√3x−2.
Câu 2. (4 điểm) Cho dãy số (xn) xác định bởi {x1=2013xn+1=x2n+82(xn−1),n∈N∗
Chứng minh dãy số (xn) có giới hạn và tìm giới hạn đó.
Câu 3. (4 điểm) Cho tam giác ABC không cân, nội tiếp đường tròn (O). Hai tiếp tuyến của đường tròn (O) tại B và C cắt nhau tại điểm I. Đường thẳng AI cắt đường tròn (O) tại điểm D (D khác A). Gọi M,K lần lượt là là trung điểm của BC và AD. Hai đường thẳng BK và AM lần lượt cắt (O) tại điểm thứ hai là E,F.
Câu 4. (4 điểm) Tìm tất cả các hàm số f:R→R thoả mãn điều kiện:
f(xy+f(x))+f(x−yf(x))=2x,∀x,y∈R.
Câu 5. (4 điểm) Người ta xếp 2014 bóng đèn đang bật sáng thành một hàng dài, từ trái sang phải. Hai người cùng thực hiện một trò chơi như sau: Lần lượt từng người chọn tuỳ ý 5 bóng đèn liên tiếp, trong đó bóng đèn đầu tiên bên trái trong 5 bóng đèn được chọn phải đang sáng và thay đổi trạng thái của 5 bóng đèn đó (từ sáng thành tắt và từ tắt thành sáng). Ai không thể thực hiện được nữa thì thua cuộc. Chứng minh rằng đến một lúc nào đó trò chơi phải kết thúc và dù cho có chơi như thế nào thì người đầu tiên luôn thua cuộc.
18. Đề thi học sinh giỏi tỉnh Đồng Nai 2013
Câu 1.
Cho hàm số y=x3+3ax2+3bx (với a,b là hai tham số thực,x là biến thực).Chứng minh rằng đồ thị hàm số đã cho có hai điểm cực trị A và B thỏa AB>2 khi và chỉ khi 2(a2−b)>1.
Câu 2.
Giải hệ phương trình:{x2y+xy+2x−12y−24=0x3−y3=2(x2+y2+xy)+3(x−y−2)
Câu 3.
Giải phương trình:cos(2x).cot(2x)=cosx.cotx
Câu 4.
Cho a,b,c là ba số thực đều lớn 1 thỏa a+b+c=abc.
Tìm giá trị nhỏ nhất của P=a−2b2+b−2c2+c−2a2.
Câu 5.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a,với a>0.Biết SAB là tam giác đều,góc giữa mp(SCD) và đáy bằng 60 độ.Gọi điểm H là hình chiếu của S lên mặt đáy,H ở trong hình vuông ABCD.Gọi M là trung điểm cạnh AB.
Tính thể tích khối chóp S.ABCD theo a.Tính khoảng cách giữa hai đường thẳng SM và AC theo a.
Câu 6.
Gọi T là tập hợp tất cả các số tự nhiên gồm có 4 chữ số phân biệt được chọn từ các chữ số 0,1,2,3,4,5,6,7.
Xác định số phần tử của T.Chọn ngẫu nhiên một số phân biệt từ tập T,tính sác xuất để số được chọn là số chia hết cho 6.
19. Đề thi chọn đội tuyển học sinh tỉnh Khánh Hòa năm 2013-2014
Bài 1. Giải phương trình tan23x+2tan3x.tan4x−1=0
Bài 2. Cho dãy số (un) thỏa mãn u1=12, un+1=u2n−un với mọi n∈N∗. Chứng minh dãy có giới hạn hữu hạn và tìm giới hạn đó.
Bài 3. Tìm tất cả các số tự nhiên n sao hco 3n+5 là số chính phương .
Bài 4. Cho tam giác nhọn ABC có trực tâm H. Trên các đoạn HB,HC lần lượt lấy 2 điểm B1,C1 sao cho ^AB1C=^AC1B=90 độ. Chứng minh AB1=AC1.
Bài 5. Cho số nguyên n>1. Có tất cả bao nhiêu dãy số (x1,x2,...,xn) với xi∈{a,b,c},i=1,2,...,n thỏa x1=xn=a và xi khác xi+1 khi i=1,2,...,n−1.
20. Đề thi học sinh giỏi tỉnh Yên Bái 2013
Câu 1
Giải hệ phương trình {x−1x3=y−1y3(x−4y)(2x−y+4)=−36
Câu 2
Giải phương trình: 64cos6x+56cos2x=2√1−cos2x+112cos24x+7, với x∈[0;2π]
Câu 3
Cho hai số thực x,y thỏa mãn điều kiện:
{3x+y−3≥03x−y−3≤02y−x−6≤0
Hãy tìm giá trị lớn nhất của biểu thức: S=2x(x−1)−4(y+x)+2(y2+x)
Câu 4
1. Cho tứ giác lồi ABCD biết hai cạnh AB và BC có độ dài không đổi AB=a, BC=b và tam giác ACD là tam giác đều.
Tính độ dài AC theo a và b khi BD có độ dài lớn nhất.
2. Trên một khu rừng đủ rộng, người ta trồng nhiều cây thông con. Xem các gốc cây thông là các điểm (đường kính gốc cây không đáng kể). Chứng minh rằng nếu ta trồng cây sao cho các tam giác có đỉnh là các điểm tạo bởi các gốc cây thông đều có diện tích không quá 500m2 thì tồn tại một tam giác có diện tích không quá 2014m2,chứa tất cả các cây thông này.
Câu 5
Tìm hàm số f:(0;+∝)→R thỏa mãn điều kiện:
{f(1)=12f(xy)=f(x).f(2014x)+f(y).f(2014x),∀x,y∈(0;+∝)
20. Đề thi học sinh giỏi tỉnh Trà Vinh 2013. Xem và thảo luận tại đây.
21. Đề thi học sinh giỏi tỉnh Ninh Bình 2013. Xem và thảo luận tại đây.
22. Đề thi học sinh giỏi tỉnh Phú Thọ 2013
Câu 5: Tìm tất cả các đa thức P(x),Q(x) có hệ số thực với hệ số bậc cao nhất bằng 1 và thỏa mãn điều kiện
P(1)+P(2)+...+P(n)=Q(1+2+...+n),∀n∈N∗.
Câu 6: Tìm tất cả các số nguyên dương n có đúng 12 ước nguyên dương thỏa đồng thời các điều kiện sau
trên đoạn [−4;6].
Câu 2.
Giải phương trình:
sin3x+sin2x+sinx+1=cos3x+cos2x−cosx
Câu 3.
Giải hệ phương trình:
{x3−3x2+6x−4=y3+3y√x−3+√y+1=3Câu 4.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Hình chiếu vuông góc của đỉnh S lên mặt phẳng (ABCD) là trung điểm H của đoạn thẳng AO. Biết SH=2a.
a) Tính cosin góc giữa hai mặt phẳng (SCD) và (ABCD).
b) Tính khoảng cách giữa hai đường thẳng AB và SC.
Câu 5.
Cho dãy số (an) xác định như sau:
{a1=5an+1=a2n−2an+166
Đặt S=n∑i=11ai+2
Tìm limSn.
13. Đề thi học sinh giỏi tỉnh An Giang 2013
Câu 1. Cho hàm số y=x3−3x có đồ thị (C) và đường thẳng (d):y=m(x−1)+2. Tìm m để (d) cắt (C) tại 3 điểm phân biệt
Câu 2. Tìm giá trị nhỏ nhất của hàm số sau với x>0 y=f(x)=2x+1x+√2(1+1x2)
Câu 3. Giải phương trình và hệ phương trình sau :
a) sin2x+12tanx=32−cos2x
b) {y2−5√x+5=0√x+2=√y2+2y+3−15y2+y
Câu 4. Trong mặt phẳng Oxy cho hai đường thẳng (Δ):x−y+2=0, (d):3x+y−4=0 và điểm A(2;2). Viết phương trình đường tròn (C) đi qua điểm A có tâm nằm trên đường thẳng d và tiếp xúc với đường thẳng Δ.
Câu 5. Cho hình chóp S.ABCD có SA=SB=SD=BD=2a,AB=BC=a, ^CBD=2^ADB, ^ABD=2^BDC. Tính thể tích khối chóp S.ABCD theo a.
14. Đề thi học sinh giỏi thành phố Hải Phòng 2013. Xem và thảo luận tại đây
15. Đề thi học sinh giỏi tỉnh Bắc Ninh 2013. Xem và thảo luận tại đây
16. Đề thi học sinh giỏi tỉnh Bến Tre 2013
Câu 1.
a) Từ đỉnh Q của một hình bình hành PQRS kẻ các đường thẳng QE vuông góc với RS(E thuộc đoạn RS, E khác R và khác S) và QK vuông góc cới PS (K thuộc đoạn PS, K khác P và khác S). Biết KE=x; QS=y (y>x). Gọi H là trực tâm của tam giác QEK. Tính QH theo x và y.
b) Trong mặt phẳng với hệ tọa độ Oxy gọi (d) là đường thẳng cắt parabol (P): y2=4x tại hai điểm phân biệt A,B (A,B khác gốc tọa độ O) sao cho tam giác OAB vuông tại O. Chứng minh rằng đường thẳng (d) luôn đi qua một điểm cố định.
Câu 2.
a) Cho f(x) là một đa thức với hệ số nguyên. Chứng minh rằng nếu n số f(0),f(1),f(2),...,f(n−1) đều không chia hết cho n (n là số tự nhiên, n≥2) thì phương trình f(x)=0 không có nghiệm nguyên.
b) Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên có 6 chữ số khác nhau và tính tổng của tất cả các số vừa tìm.
Câu 3. Giải phương trình và hệ phương trình sau:
a) √x+8+9x√x+8−6√x=0.
b) {x2=2x−yy2=2y−zz2=2z−tt2=2t−x
Câu 4. Có ba trường học mỗi trường có n học sinh. Một học sinh bất kỳ có tổng số người quen từ hai trường học kia là n+1. Chứng minh rằng có thể chọn được ở mỗi trường học một học sinh sao cho ba học sinh này quen lẫn nhau.
17. Đề thi học sinh giỏi tỉnh Bà Rịa Vũng Tàu 2013
Câu 1. (4 điểm) Giải phương trình sau trên tập số thực
8x3−12x2+5x=3√3x−2.
Câu 2. (4 điểm) Cho dãy số (xn) xác định bởi {x1=2013xn+1=x2n+82(xn−1),n∈N∗
Chứng minh dãy số (xn) có giới hạn và tìm giới hạn đó.
Câu 3. (4 điểm) Cho tam giác ABC không cân, nội tiếp đường tròn (O). Hai tiếp tuyến của đường tròn (O) tại B và C cắt nhau tại điểm I. Đường thẳng AI cắt đường tròn (O) tại điểm D (D khác A). Gọi M,K lần lượt là là trung điểm của BC và AD. Hai đường thẳng BK và AM lần lượt cắt (O) tại điểm thứ hai là E,F.
- Chứng minh ^BAD=^MAC.
- Chứng minh hai đường thẳng EF và AB song song với nhau.
Câu 4. (4 điểm) Tìm tất cả các hàm số f:R→R thoả mãn điều kiện:
f(xy+f(x))+f(x−yf(x))=2x,∀x,y∈R.
Câu 5. (4 điểm) Người ta xếp 2014 bóng đèn đang bật sáng thành một hàng dài, từ trái sang phải. Hai người cùng thực hiện một trò chơi như sau: Lần lượt từng người chọn tuỳ ý 5 bóng đèn liên tiếp, trong đó bóng đèn đầu tiên bên trái trong 5 bóng đèn được chọn phải đang sáng và thay đổi trạng thái của 5 bóng đèn đó (từ sáng thành tắt và từ tắt thành sáng). Ai không thể thực hiện được nữa thì thua cuộc. Chứng minh rằng đến một lúc nào đó trò chơi phải kết thúc và dù cho có chơi như thế nào thì người đầu tiên luôn thua cuộc.
18. Đề thi học sinh giỏi tỉnh Đồng Nai 2013
Câu 1.
Cho hàm số y=x3+3ax2+3bx (với a,b là hai tham số thực,x là biến thực).Chứng minh rằng đồ thị hàm số đã cho có hai điểm cực trị A và B thỏa AB>2 khi và chỉ khi 2(a2−b)>1.
Câu 2.
Giải hệ phương trình:{x2y+xy+2x−12y−24=0x3−y3=2(x2+y2+xy)+3(x−y−2)
Câu 3.
Giải phương trình:cos(2x).cot(2x)=cosx.cotx
Câu 4.
Cho a,b,c là ba số thực đều lớn 1 thỏa a+b+c=abc.
Tìm giá trị nhỏ nhất của P=a−2b2+b−2c2+c−2a2.
Câu 5.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a,với a>0.Biết SAB là tam giác đều,góc giữa mp(SCD) và đáy bằng 60 độ.Gọi điểm H là hình chiếu của S lên mặt đáy,H ở trong hình vuông ABCD.Gọi M là trung điểm cạnh AB.
Tính thể tích khối chóp S.ABCD theo a.Tính khoảng cách giữa hai đường thẳng SM và AC theo a.
Câu 6.
Gọi T là tập hợp tất cả các số tự nhiên gồm có 4 chữ số phân biệt được chọn từ các chữ số 0,1,2,3,4,5,6,7.
Xác định số phần tử của T.Chọn ngẫu nhiên một số phân biệt từ tập T,tính sác xuất để số được chọn là số chia hết cho 6.
19. Đề thi chọn đội tuyển học sinh tỉnh Khánh Hòa năm 2013-2014
Bài 1. Giải phương trình tan23x+2tan3x.tan4x−1=0
Bài 2. Cho dãy số (un) thỏa mãn u1=12, un+1=u2n−un với mọi n∈N∗. Chứng minh dãy có giới hạn hữu hạn và tìm giới hạn đó.
Bài 3. Tìm tất cả các số tự nhiên n sao hco 3n+5 là số chính phương .
Bài 4. Cho tam giác nhọn ABC có trực tâm H. Trên các đoạn HB,HC lần lượt lấy 2 điểm B1,C1 sao cho ^AB1C=^AC1B=90 độ. Chứng minh AB1=AC1.
Bài 5. Cho số nguyên n>1. Có tất cả bao nhiêu dãy số (x1,x2,...,xn) với xi∈{a,b,c},i=1,2,...,n thỏa x1=xn=a và xi khác xi+1 khi i=1,2,...,n−1.
20. Đề thi học sinh giỏi tỉnh Yên Bái 2013
Câu 1
Giải hệ phương trình {x−1x3=y−1y3(x−4y)(2x−y+4)=−36
Câu 2
Giải phương trình: 64cos6x+56cos2x=2√1−cos2x+112cos24x+7, với x∈[0;2π]
Câu 3
Cho hai số thực x,y thỏa mãn điều kiện:
{3x+y−3≥03x−y−3≤02y−x−6≤0
Hãy tìm giá trị lớn nhất của biểu thức: S=2x(x−1)−4(y+x)+2(y2+x)
Câu 4
1. Cho tứ giác lồi ABCD biết hai cạnh AB và BC có độ dài không đổi AB=a, BC=b và tam giác ACD là tam giác đều.
Tính độ dài AC theo a và b khi BD có độ dài lớn nhất.
2. Trên một khu rừng đủ rộng, người ta trồng nhiều cây thông con. Xem các gốc cây thông là các điểm (đường kính gốc cây không đáng kể). Chứng minh rằng nếu ta trồng cây sao cho các tam giác có đỉnh là các điểm tạo bởi các gốc cây thông đều có diện tích không quá 500m2 thì tồn tại một tam giác có diện tích không quá 2014m2,chứa tất cả các cây thông này.
Câu 5
Tìm hàm số f:(0;+∝)→R thỏa mãn điều kiện:
{f(1)=12f(xy)=f(x).f(2014x)+f(y).f(2014x),∀x,y∈(0;+∝)
20. Đề thi học sinh giỏi tỉnh Trà Vinh 2013. Xem và thảo luận tại đây.
21. Đề thi học sinh giỏi tỉnh Ninh Bình 2013. Xem và thảo luận tại đây.
22. Đề thi học sinh giỏi tỉnh Phú Thọ 2013
Câu 5: Tìm tất cả các đa thức P(x),Q(x) có hệ số thực với hệ số bậc cao nhất bằng 1 và thỏa mãn điều kiện
P(1)+P(2)+...+P(n)=Q(1+2+...+n),∀n∈N∗.
Câu 6: Tìm tất cả các số nguyên dương n có đúng 12 ước nguyên dương thỏa đồng thời các điều kiện sau
- 1=d1<d2<...<d12=n,
- dd4−1=d8(d1+d2+d4).
- Đường tròn ngoại tiếp tam giác IaIbIc có tâm là P và bán kính bằng 2R.
- Điểm K nằm trên đường thẳng Euler của tam giác ABC.
Không có nhận xét nào:
Đăng nhận xét